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Figure 1: Stills from a practice session, where the stage lights convey movement quality according to smoothness profiles A-D,
predetermined by the user. As a motion capture device we used the MiMU Glove.
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ABSTRACT
In our research we faced the problem of characterizing smoothness
in human movement. Even though ’smooth’ is a common way to
describe and conceptualize motion in the performing arts as well as
in informal speech, we realized the need for a tool to differentiate
between various degrees and modes of smoothness. We propose
that smoothness operates at different interlocking orders. These
appear only in aggregation, intertwined with other qualities of
body movement. Akin to how a spectrometer splits light into a
spectrum of frequencies, we developed a method to measure the
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degree of smoothness in each order, as an epistemic tool for dance
practitioners to investigate the quality of body movement from a
fresh perspective. To this end we have implemented a device that
provides dancers with aural, haptic and visual feedback in real time,
taking into account the constraints of a dance practice session.
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• Applied computing→ Performing arts; •Human-centered
computing → User interface toolkits.
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1 INTRODUCTION
Smooth is a term used in a number of disciplines with rather di-
verse meanings to refer to the ’smoothness’ quality of sometimes
disparate processes. In music for instance, the term smooth has
been used to describe a quality of certain chord progressions [6], a
perceived quality of some melodic passages [10], as well as specific
music related movement characteristics. In philosophy, Deleuze
and Guattari’s seminal work [9] notably introduced the notion of
smoothness to signify the aspect of a phenomenon that covers its
intensive and qualitative nature as opposed to the extensive and
quantitative one. When referring to body movement, a general def-
inition of ’smooth’ states that [it] "is perceived to be smooth, when
it happens in a continual fashion without any interruptions" [2].
Moreover, since smoothness in body movement is considered to be
a revealing characteristic of health and neurological development
[2], different measures of smoothness have been proposed over the
years from the field of health and rehabilitation [13]. Some research
has gone as far as to suggest a correlation between smooth speed
profiles of movement and psychological states such as ’flow’ [5]. In
mathematics however, the notion of smoothness has a very specific
meaning, which refers to the existence of derivatives in all orders.
Thus a motion is considered to be smooth if there are no abrupt
changes in the position, in the velocity, in the acceleration, in the
jerk (rate of change of acceleration), and so on.

Smooth is also used in dance to loosely describe the perceived
smoothness of movements, progressions, and transitions. However,
there are very few tools that provide insight into its objective char-
acteristics1 beyond fields like rehabilitation [2] or robotics [12]. We
would like to remedy this situation by providing an easy-to-use
tool that can be utilized in as close an ecological setting as possible.
Our contribution is to apply such metrics of movement smoothness
to dance, and develop a device that can be playfully incorporated
into dance practice as a tool to interrogate movement quality from
a fresh perspective.

1 Orlandi et al. state that Research in dance has traditionally ’rarely studied objective
features like speed or acceleration’ [11].

2 MEASURING SMOOTHNESS
The task of measuring smoothness of body movements typically
revolves around tracking irregular abrupt signals using spectral
methods [2] or tracking the variation of acceleration over time, the
so-called jerk.2 Our approach does not track isolated quantities by
themselves, but instead acknowledges that all orders of derivatives
are related to each other and therefore the characteristics of the
motion are captured by their joined behavior. In the following we
describe the spectral metric in contrast with our proposed approach
of aggregated orders of smoothness.

2.1 Spectral approach
The spectral metric aimed at measuring smoothness was put forth
by Balasubramainan et al. [1]. They introduced the spectral arc-
length that uses a movement speed profile’s Fourier magnitude
spectrum to quantify movement smoothness. They start from the
speed profile v(t) := dQ

dt for some movement Q(t). The Fourier-
transformed value ṽ(ω) is then a spectral function of the frequency
ω. The more modulated ṽ(ω) becomes, the less smooth the move-
ment. This observation is at the heart of the authors’ rationale to
put forth the arc-length of the normalized curve ṽ(ω)/ṽ(0) up to a
given spectral threshold ω0:

1
ω0

∫ ω0

0

√
dω2 +

dṽ(ω)2

ṽ(0)2
(1)

as ameasure for smoothness, or rather non-smoothness. The Fourier
transform is particularly good at picking up irregularities in repet-
itive patterns. Thus this metric will work very well to pick up a
tremor or other secondary movement patterns with a higher fre-
quency signature. It has, however, drawbacks for the analysis of
movement in dance where modulations are not only common, but
an important part of a dancer’s movement palette.

2.2 Orders of Smoothness and Their
Aggregation

It is an intriguing feature of the physical world that the way things
change is not only subjected to change itself, but that this change
is also subjected to characteristics, typical behavior, bounds and
conditions. Regarding the motion of a pendulum, we know that
the position changes due to forces that themselves depend on the
position. However, since the two dimensions of position and change
of position are strongly correlated, not all trajectories are physi-
cally possible. A trajectory resembling a circular orbit in this two-
dimensional space indicates that the underlying motion is some
form of oscillation, as is the case for the pendulum.

However, in order to understand the intricacies of a complex
motion it is important to capture the higher order rates of change
as well, such as the acceleration, the jerk (rate of change of the
acceleration), the snap (rate of change of the jerk) and successively
higher orders. As was the case for the simple pendulum, these or-
ders are not simply independent from one another, but mutually
dependent. It is the trajectory of the motion in this space of ever

2 For instance, ‘jerk’ of body movement is considered in some contexts to be indicative
of exercise-induced fatigue [14], and other jerk-based smoothness metrics for the
accomplishment of complex tasks have been also investigated by Gulde et al. [7]
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Figure 2: Still image from the SmoothOperator Max for Live device running inside Ableton Live. The macro controls 1-6 on
the left of the device correspond to the parameters described in 2.2.

Figure 3: Still image from the user interface of the standalone version of the SmoothOperator: The upper left panel shows
recording options and parameter settings. The upper right panel takes in video input for documentation purposes. The radar
plots in the lower panel show four user-defined smoothness profiles (labeled A-D) characterized by the first (purple), second
(green), third (orange) and fourth (brown) orders The vertical line (red) represents the aggregated value.

higher order derivatives that yields the characteristics and eventu-
ally a profile of the motion. We suggest this may also be the case in
contemporary dance practice, where transitions of gestures might
have a characteristic trajectory signature in this abstracted space.

The velocity is mathematically defined as a limit of the differ-
ence in position over an infinitesimally close succession of times.
In general, any rate of change of a quantity Q is defined in this
limiting manner. The velocity is the rate of change of position, the
acceleration is the rate of change of velocity and so forth. Formally,
the rate of change of Q is defined as:

d

dt
Q = lim

∆→0

Q(t) −Q(t − ∆)

∆
(2)

Both our perception and digital recording devices have a finite
temporal resolution.3 This ‘graininess’ of time is often represented
by the Planck-constant and is far beyond the resolution that we refer

3 According to most conventional modern physical theories even nature itself has a
certain graininess with respect to its temporal resolution. [3][4]

to when talking about perception and recording.4 Nevertheless, we
henceforth consider only the discrete non-infinitesimal version of
the rate of change and its higher orders,

∆Q

∆t
=

Q(t) −Q(t − ∆t)

∆t

∆nQ

∆tn
=

n∑
k=0

Q(t − k∆t)(−1)k
(
n

k

)
(3)

where the latter follows by induction from the former. Here n is the
order of the discrete derivative and k is a summation index. The
quantities that we are concerned with in this paper are primarily
the raw signals from the capture device, such as the translational
motion or the rotation along one of the axes. However Q may also
be an aggregated signal, such as the radius.

4 From the perspective of human perception, that ’graininess’ of time has probably
more to do with biological perception thresholds, such as the flicker fusion threshold
[8]. This and other considerations about perception are, however, beyond the scope of
this paper.
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Figure 4: Processing workflow of the inputs and outputs of the SmoothOperator during our case study with the MiMU Gloves.

We calculate the aggregated orders of smoothness from the quan-
tity Q by the following parameterized formula:

Sk
(
t
)
= αk

∆kQ

∆tk

(
t
)
+ (1 − αk )S

k (t − 1
)

S
(
t
)
:=

k=L∑
k=0

γk
���Sk (t ) ��� (4)

The first equation may be recognized as the definition of an ex-
ponentially weighted moving average (EWMA) for the discrete
derivatives ∆kQ

∆tk
at the respective orders k . This EWMA attenuates

the signal and makes it more usable for the purposes of artistic
movement studies. The attenuation factor αk is a measure for the
effective window length over which the average is taken. A con-
ventional quantity used to measure this effective duration is ∆t/α .
We observed that a constant α independent of the order k makes
the higher orders more rugged. Hence, we parameterized the at-
tenuation via αk = α · f k , where f ≥ 1 is the factor by which the
attenuation of successive orders is enhanced. For f = 1 all orders
are attenuated at the same rate α . All values Sk are initialized to
zero, i.e. Sk (0) = 0. The second equation sums the absolute values
of all contributions up to level L, weighted respectively by a factor
γk . For γ = 1 all orders have the same weight, but in practice one
may put more emphasis on higher orders.. We also note that we

retrieve the discrete version of the Ck -norm for α = γ = 1. In the
following part we discuss out parameter choices.

Alpha Scaling Factor f . We have observed that a higher atten-
uation factor for higher derivatives yields a better signal-to-noise
ratio. We account for this observation by introducing a scaling
factor f that decreases the attenuation αk = α f k . Therefore we
constrain f ≥ 1. In practice we have chosen it to be f ≈ 1.25.

Attenuation α . We are interested from a performance standpoint
in the persistent and non-volatile expression of the various orders
of change. The factor α is inversely related to the window size for
the EWMA. In practice we have chosen small values of 0 < α ≤ 1
around 0.01 or smaller.

Time Interval Factor. This parameter gives the user the option of
scaling the time interval, set by the sampling rate.

Level Scaling Factor γ . From the practitioner’s perspective the
higher order derivatives are the most counter-intuitive and insight-
ful. For that reason we have introduced the level scaling factor γ .
We also require γ ≥ 1. In practice we found values of γ ≈ 1.25 to
be the most insightful.

Orders L. The number of orders of differentiation. We have typi-
cally set L = 4.
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Figure 5: Dancer Maria Shurkhal practicing with the SmoothOperator. On the Left, Maria explores the device using only the
sonification feature. On the right, somemoments from the recording of a practice session involving sonification and interactive
lighting (in this session, the smartphone is attached to the dancer’s belt).

Sampling Rate ∆t . For our purposes we chose ∆t = 0.33 seconds.

3 DEVICE
We implemented a tool that calculates the aggregated orders of
smoothness from a constant stream of data as described in 2.2, and
yields a graphic representation of the ’smoothness space’ as shown
in Fig. 3.

In addition to the plotted graphs displayed on the UI,5 we exper-
imented with different kinds of visual, aural and haptic feedback in
the context of dance practice sessions. Visual feedback was achieved
by modifying hue and brightness of the stage lights, sending color
information to a DMX lighting system.6 Users could define up to
four different ’profiles’ (i.e. positions in smoothness space) arbitrarily
associated with the lighting colors red, violet, blue and green. The
ensuing stage lighting was the result of the interpolation of RGBW
values between the predetermined positions. The aural feedback
is a beeping signal whose change in speed, pitch, envelope shape

5 The standalone version (c.f. Figure 3) of the SmoothOperator can fetch sensor data
directly via OSC from any OSC-capable device. Additionally, there is a Max for Live
device version of the SmoothOperator which can be hosted in Ableton Live (c.f. Figure
2), and takes Continuous Control (CC) midi messages as input.
6Specifically, we send DMX messages with color information according to the RGBW
protocol.

and waveform is proportional to the first, second, third and fourth
smoothness orders of the motion. We finally experimented with
the smartphones’ vibration feature to provide haptic feedback to
the dancers: based on a previously defined narrow region of the
smoothness space, performers wearing the smartphone attached to
their bodies (Fig. 5) would receive a buzzing cue when movement
characteristics match the predefined ones.

4 CASE STUDY
We tested the prototype of the Smooth Operator using the MiMU
Gloves,7 which provide a good combination of Magneto-Inertial
Measurement Units as well as flex sensors in a compact wearable de-
vice. We processed individual streams of movement data (e.g. pitch,
yaw, and roll dimensions of the dancers’ hand movements) which
were then aggregated to yield an overall smoothness profile. We
found particularly useful to define in advance a specific region in
’smoothness space’ which performers set up to explore, a practice-
based method we came to call targeted movement exploration. In

7https://mimugloves.com/

https://mimugloves.com/
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tests involving full body motion we used built-in smartphone sen-
sors8 to gather motion data (i.e. motion along the x , y and z axes)
and send it to the SmoothOperator via OSC. Led primarily by the
sonification, dancers began to identify and loosely differentiate
between ’qualities of smoothness’, and quickly went on to suggest
more sophisticated combinations of movements to probe.

5 CONCLUSIONS AND FUTUREWORK
We see our work as a preliminary exploration of the smoothness
space, and further research is necessary to verify any claim about
the validity of the smooth descriptor. Although this paper is only
concerned with movement in 3D space, the quality of smoothness
is of course not exclusive to movement. In principle, the Smooth-
Operator can take in and process any kind of data stream, which
opens the door to all sorts of cross-media artistic experimentation.
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